B-CONVEXITY AND REFLEXIVITY
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ABSTRACT

If ¢ > 1/4 and X is 3,e-convex then X is reflexive. Some additional values
of k and ¢ with k = 4 are found for which &,e-convexity implies reflexivity.

If k =22 and ¢ > 0, a Banach space X is called k,s-convex if, for each choice of
Xgy % in X with | x;| £ 1,1 £ i £k, then

| £ %% & 2 x| Sk(1-¢

for some choice of the + and — signs. X is B-convex if, for some k =2 and
e > 0, X is k,s-convex.

B-convexity was introduced by A. Beck [1] as a characterization of Banach
spaces X for which the ‘“‘uniformly bounded variances’ Strong Law of Large
Numbers is valid for X-valued random variables. A general study of B-convexity
is given in [4].

B-convexity is a generalization of uniform convexity, long known to imply
reflexivity, and so the question of whether or not all B-convex spaces are reflexive
arose naturally. Several results support the conjecture that B-convexity implies
reflexivity including results in [4] showing parallels in structure between the
classes of B-convex and reflexive spaces, the theorem of R. C. James ([9], Theorem
1.1) that 2, e-convexity implies reflexivity, and the author’s theorem, [5], that a
B-convex normed Riesz space (Banach lattice) is reflexive.

In this paper, we show that if k = 3 and ¢ > 1 — 9/4k, then all k,e-convex
spaces are reflexive (Theorem 3 and Corollary 6). Since (Theorem 7 and Remark 8)
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ifk = 6,e>1—9/4k, and X is k,e-convex, then X is finite-dimensional, we see
that the results of this paper are of interest only for k = 3, 4, and 5.

LemMa 1. If2Z<n<k, ke>k—n, and X is k,s-convex, then X is
n, 6-convex with 6 = n~'(ke — k + n).

ProOF. If X is ke-convex, xy,--,x,€X with |x] <1, and x4y = -
= x, = 0, then for some choice of + and — signs

| £ % £ £ x] S k(l—¢)
from which it follows that for some choice of the 4+ and — signs,

| x££ x,]| Sk(l—¢) =n1-95).

ReMARK 2. By Lemma 1, if X is 3, s-convex with ¢ > 1, then X is 2, §-convex
with 6 > 0, hence by James’ theorem [9, Theorem 1.1] X is refiexive. However,
there do exist spaces which are 3, e~convex with ¢ > 4 but which are not 2, §-convex
for any 8 > 0 (for atrivial example, 2-dimensional /, which is precisely 3, 1-convex)
so that our present Theorem 3 is not included in James’ theorem. Nor is James’
theorem included in ours as is demonstrated by any [, space of dimension at least
3 with p close enough to 1.

THEOREM 3. If a Banach space X is 3, e-convex with ¢ > }, then X is reflexive,

PrOOF. Suppose X is not reflexive. For each ¢ > 1, we will find x', y', z2'e X
with |x| 1, [y 51, [#] £ 1, and

Hix’iy'iz’“ > 31 -9

for all choices of the + and — signs, so that X is not 3, e-convex. The construction
we give of the sets S(k,, ---. k,,) and the numbers K, follows James [10] which is a
simplification of the argument used by James in [9] to establish reflexivity of
2, e-convex spaces for any & > 0.

Since X is not reflexive, if 0 < 8 < 1, then there exist z,€ X and f, € X* such
that |z,[| < 1 and |f,| < 1 for all n and f,(z) = 0 for n < k, f(z,) = 0 for
n > k (James [8, Theorem 7).

Now for 1 £k, < k; < -+ < ky, s€t

S(ky, - ko) = {xeX:fi(x) = (= D0 if 1 i< nand ky;_y SkSky}

and
K(ky, s k) = inf{| x| : x € SCky, -+, K20}

Since
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™M=

(= 1)i(zk,,_ Ziyi~1) €S(k1, -, kap)

1

we have K(ky, -+, k,,) < 2n. Now let
K, =lim inf (lim inf ( lim inf K(ky,--, kp,)- ))

ki—oo k2= kan= 0
Then K, < 2n. Since we also have
K(kla s k2n) = K(kb Tty k2;1+2)

it follows that K, < K, .. Also 8 £ K(k,---,k;,) s0 8 < K,. We now need the
following lemma concerning the growth of sequences like {K,}.

Lemma 4. If {a,} is a non-decreasing sequence of positive real numbers for
which a, = O(n) and {j,} and {k,} are increasing sequences of integers for which
Jn+1—Jn=0() and liminf,_, . j,/k,=r with 0 <r <1, then limsup,.,
a; la,, 2.

ProoF. Suppose limsup,.,,4a;, /a;, < r. Then there are numbers N, s, and ¢
with 0 < s <t < r < 1 such that for n = N, a; /a,, < s and j, [k, > t. Define
sequences {I,} and {m,} of integers by requiring that I, = j, and, for each n, if
l, =Jj, then m, = k; and I, = j, where j,_, <k; £j,. Then g, < sa,,
< sa,,, s0 a;, = s'™"a;. On the other hand, if j,4; —j, < M for all n, then
L,z tmy 2 (1,41~ M) so

LSt + M@ "+ 27" + - + 1)

u

[+ M@= hH L - 8]
Hence

a, [l z @t)sy=ta, [l + M=) 1 - 1]

Since ¢t < 1, the bracketed portion is bounded as n — 0. Also s < ¢, so we have a
contradiction to the assumption that a, = 0(n).
It follows from Lemma 4 that

3
-

. K¢,-
limsup —Sv=3 >
n—>w KSn

Now fix 6 > 0. Pick n for which K¢, ;/Kg, = 3(1 — 8)/4. Now if integers

P15 P16ns 91> ""s G16n—25 T1>***s T16n—a ar€ chosen so that the sequence
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P1, 41, 715 P2s P3s 92> 435 T2, T35 Das Ds,
qas 955 Tas Tss***s Pan—25 Pan—1> dan—25
dan—1s Tan-2> T4n—15 Pans Pan+1s 94n
Gan+15 Pan+2> Pant3s 94n425 dan+3s Tans
Y4n+15"""sP8n—2o Pen-1> d8n-2> d8n—1>
Ygn—4s T8n~35 Psns Psn+1s Ten-25 Tan—15
P8n+2s P8n+3s 98n> d8n+15 T8as Yanv1s°'"s
P12n-2> P12n—1> 912n-4> 9125-3> T12n-4> T120-35
DPi2ns Piz2n+1> 912n~2> 912n~15 P12n+2
P125+3> 1205 912n+1s Y12n-25 T12a-1"""»
Pi16n-2s P16n-1s> d16n-4s> 916n-3s T16n-65 T16n-55
Pi6ns d16n-25 T164-4
is increasing and if
xes(pla”'sPIGn)a
1) y€58(q1,-",q16s-2)> and
2€8S(ryy s T1n-a), then
(‘})(X +y+ Z)ES(FI, P25 735 Pas* s Tan—15 Pans
Qan+5 Tan+2s dan+7s Tan+4as*"'> dsn—15 Tgn—as
Dsn+5> dsn+2> Psn+7s dsntds s Pran+ 1> d12n-2)s
G =x—y + 2)€5(43, 72, d5: T4s***sGan—1> Tan—25
Q4n+1s Pan+2s Tant1s Pantds Tan+3s Pantes
**s"8n—~3> P8u> P12n+5s 912n+25 P12n+7s
Q12n+4s"""sPi6n—15 d16n-4)>
(%)(_ xX+y-— Z)ES(p4,,+3, 9an+2s Pan+ss Qan+as
**sP8n-1> 98n-25 Pan+1> T8n-25 98a+1s
T8ns dgn+3> T8n+25°""sd120—35 F12n-45
d12n~1> Pi2n+25 T12n-15 P12n+4s T12n+1,

Di2n+6:°""sT16n—55 Pi6a)s
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and

BD(=x + y + 2)€S(P3, 92> Ps» as "> Pan+ 1>
Q4ns Tgn+1s> Pgn+4s Fsn+3s Pantesr’ s
Ti2n-3s Piz2as 912n+3> T12n Q12045 T12a+2s

s q16n-3 T16n-6)-

From the definition of {K,} we see that it is possible to choose the p’s, ¢’s, and r’s
so that there exist x, y, and z satisfying (1) and, in addition, both

H X “ é KBn(l + 6)9
H y H K8n-—1(1 + 6) é KSn(l + 6):
Iz] = Kenzll +6) < Kgi(1 +9),

IA

and

v

| +x+y+z] 2 3Ke-5(1-9),
| -x-»y+ Z“ 2 3Kg,-5(1 = 9),

| =x+y-z|

v

3Ken- (1 — 8) = 3Kg,—5(1 — ),
| = x+y+z]| 2 3Kens(l - ).

So if ¢'= [Kg,(1 + 8] !, x' =cx, y' =¢y, and z’ = cz, then ”x’” <1,

ly'| £1,and |z'|| £ 1, while for each choice of the + and — signs,
' ’ ' K a-—- (1_5)
[£xty+z| 2 37%;:‘(%1—_;“5)—
5 3.3.0-9"
= 4 (1 +9)

Since & > 0 is arbitrary, it follows that for every ¢ > %, X is not 3, e-convex.

REMARK 5. The author conjectures with a high degree of confidence that the
technique of proof of Theorem 3 can be extended to show that if ¢ > 1 —k2'~*
and X is k, s-convex, then X is reflexive, However, in view of the easily established
inequality 1 —k2'=* > 1 —9/(4k) for k = 4 and the following corollary, this
seems pointless.

COROLLARY 6. If k23, ¢ > 1—9/(4k), and X is k,e-convex, then X is
reflexive.
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Proor. From Lemma 1, it follows that X is 3, d-convex with é > }, so that
Theorem 3 applies.

THEOREM 7. If X is an infinite dimensional k,e-convex space, then
eS1-k %

ProoF. Since by a theorem of Dvoretzky (see, e.g. [3]) X contains subspaces
approximating k-dimensional Hilbert space as closely as one wants, it is suf-
ficient to establish the inequality for k-dimensional Hilbert space. But there, it is
the immediate consequence of the fact that, if x,, -+, x, is an orthonormal sequence
in a Hilbert space, then for all choices of the signs,

| £ % £ %, & & x| = k%

ReMARK 8. From the easily established k-parallelpiped law in Hilbert space

Elextotxf=2F ful
i=1

where the first Y. is over the 2* choices of signs, we see that any Hilbert space (or
even inner product space) is k, 1 — k~*-convex so that the bound in Theorem 7
is sharp.

If we say that every space is k, O-convex and for fixed X let g, = sup{e =2 0: X
is k, e-convex} (so that, in fact, X is k, g-convex), then (in a different notation) [4,
Lemma L4, p. 119] tells us that either g, = 0 in which case X is not B-convex or
g, — 1 in which case X is B-convex and in the latter case there exists a y > 0 for
which 1 — g, = O(k~?). It follows from Theorem 7 that if X is infinite dimensional,
9 < 1. By a routine extension of the technique of [4, example L.3(i), p. 118] (if
k > nand x,,--, x, are vectors in n-space, then there are scalars a,, --+, a, with all
la;| £ 1, k—n of the |a;| = 1, and I a;x; = 0), we see that for k > n, all
n-dimensional spaces are k, 1 —n /k-convex, so in this case y = 1.

Since 1 — k=% < 1 —9/(4k) for k = 6, we see that Corollary 6 can only be
applicable to an infinite dimensional X for k = 3, 4, or 5. Since every finite
dimensional space is reflexive, these are the only interesting cases of Corollary 6.
Summarizing James’ theorem and the present results, a k,e-convex space is

reflexive in case

= 2 and ¢ > 0,

= 3 and ¢ > 1/4,

4 and ¢ > 7/16,
5 and & > 11/20.
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COROLLARY 9. If X is k,e-convex with k and ¢ as in (2) above, then X is super-
reflexive and stable.

ProOF. Super-reflexivity follows from [7, Theorem 3] (see [7] for the definition
of super-reflexivity) and stability follows from Brunel and Sucheston [2, Theorem
1] or [6, Corollary 1]. (Stability is defined in both of these papers.)
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