B-CONVEXITY AND REFLEXIVITY

BY

DANIEL P. GIESY

ABSTRACT

If $\varepsilon > 1/4$ and X is 3, ε -convex then X is reflexive. Some additional values of k and ε with $k \ge 4$ are found for which k,ε -convexity implies reflexivity.

If $k \ge 2$ and $\varepsilon > 0$, a Banach space X is called k, ε -convex if, for each choice of x_1, \dots, x_k in X with $||x_i|| \le 1, 1 \le i \le k$, then

$$\left\| \pm x_1 \pm x_2 \pm \cdots \pm x_k \right\| \leq k(1-\varepsilon)$$

for some choice of the + and - signs. X is B-convex if, for some $k \ge 2$ and $\varepsilon > 0$, X is k, ε -convex.

B-convexity was introduced by A. Beck [1] as a characterization of Banach spaces X for which the "uniformly bounded variances" Strong Law of Large Numbers is valid for X-valued random variables. A general study of B-convexity is given in [4].

B-convexity is a generalization of uniform convexity, long known to imply reflexivity, and so the question of whether or not all *B*-convex spaces are reflexive arose naturally. Several results support the conjecture that *B*-convexity implies reflexivity including results in [4] showing parallels in structure between the classes of *B*-convex and reflexive spaces, the theorem of R. C. James ([9], Theorem 1.1) that 2, ε -convexity implies reflexivity, and the author's theorem, [5], that a *B*-convex normed Riesz space (Banach lattice) is reflexive.

In this paper, we show that if $k \ge 3$ and $\varepsilon > 1 - 9/4k$, then all k, ε -convex spaces are reflexive (Theorem 3 and Corollary 6). Since (Theorem 7 and Remark 8)

Received November 24, 1972

if $k \ge 6$, $\varepsilon > 1 - 9/4k$, and X is k, ε -convex, then X is finite-dimensional, we see that the results of this paper are of interest only for k = 3, 4, and 5.

LEMMA 1. If $2 \le n < k$, $k \ge k - n$, and X is k, ε -convex, then X is n, δ -convex with $\delta = n^{-1}(k \varepsilon - k + n)$.

PROOF. If X is k,ε -convex, $x_1, \dots, x_n \in X$ with $||x_i|| \le 1$, and $x_{n+1} = \dots = x_k = 0$, then for some choice of + and - signs

$$\|\pm x_1\pm\cdots\pm x_k\|\leq k(1-\varepsilon)$$

from which it follows that for some choice of the + and - signs,

$$\| \pm x_1 \pm \cdots \pm x_n \| \leq k(1-\varepsilon) = n(1-\delta).$$

REMARK 2. By Lemma 1, if X is 3, ε -convex with $\varepsilon > \frac{1}{3}$, then X is 2, δ -convex with $\delta > 0$, hence by James' theorem [9, Theorem 1.1] X is reflexive. However, there do exist spaces which are 3, ε -convex with $\varepsilon > \frac{1}{4}$ but which are not 2, δ -convex for any $\delta > 0$ (for a trivial example, 2-dimensional l_1 which is precisely 3, $\frac{1}{3}$ -convex) so that our present Theorem 3 is not included in James' theorem. Nor is James' theorem included in ours as is demonstrated by any l_p space of dimension at least 3 with p close enough to 1.

THEOREM 3. If a Banach space X is 3, ε -convex with $\varepsilon > \frac{1}{4}$, then X is reflexive.

PROOF. Suppose X is not reflexive. For each $\varepsilon > \frac{1}{4}$, we will find x', y', $z' \in X$ with $||x'|| \le 1$, $||y'|| \le 1$, $||z'|| \le 1$, and

$$\left\|\pm x'\pm y'\pm z'\right\|>3(1-\varepsilon)$$

for all choices of the + and - signs, so that X is not 3, ε -convex. The construction we give of the sets $S(k_1, \dots, k_{2n})$ and the numbers K_n follows James [10] which is a simplification of the argument used by James in [9] to establish reflexivity of 2, ε -convex spaces for any $\varepsilon > 0$.

Since X is not reflexive, if $0 < \theta < 1$, then there exist $z_n \in X$ and $f_n \in X^*$ such that $||z_n|| \le 1$ and $||f_n|| \le 1$ for all n and $f_n(z_k) = \theta$ for $n \le k$, $f_n(z_k) = 0$ for n > k (James [8, Theorem 7]).

Now for $1 \le k_1 < k_2 < \dots < k_{2n}$, set

$$S(k_1, \dots, k_{2n}) = \{ x \in X : f_k(x) = (-1)^i \theta \text{ if } 1 \le i \le n \text{ and } k_{2i-1} \le k \le k_{2i} \}$$

and

$$K(k_1, \dots, k_{2n}) = \inf \{ \| x \| : x \in S(k_1, \dots, k_{2n}) \}.$$

Since

$$\sum_{i=1}^{n} (-1)^{i} (z_{k_{1}} - z_{k_{2i-1}-1}) \in S(k_{1}, \dots, k_{2n})$$

we have $K(k_1, \dots, k_{2n}) \leq 2n$. Now let

i

$$K_n = \liminf_{k_1 \to \infty} \left(\liminf_{k_2 \to \infty} \left(\cdots \liminf_{k_{2n} \to \infty} K(k_1, \cdots, k_{2n}) \cdots \right) \right).$$

Then $K_n \leq 2n$. Since we also have

$$K(k_1, \cdots, k_{2n}) \leq K(k_1, \cdots, k_{2n+2})$$

it follows that $K_n \leq K_{n+1}$. Also $\theta \leq K(k_1, \dots, k_{2n})$ so $\theta \leq K_n$. We now need the following lemma concerning the growth of sequences like $\{K_n\}$.

LEMMA 4. If $\{a_n\}$ is a non-decreasing sequence of positive real numbers for which $a_n = \mathcal{O}(n)$ and $\{j_n\}$ and $\{k_n\}$ are increasing sequences of integers for which $j_{n+1} - j_n = \mathcal{O}(1)$ and $\liminf_{n \to \infty} j_n/k_n = r$ with 0 < r < 1, then $\limsup_{n \to \infty} a_{j_n}/a_{k_n} \ge r$.

PROOF. Suppose $\limsup_{n\to\infty} a_{j_n}/a_{k_n} < r$. Then there are numbers N, s, and t with 0 < s < t < r < 1 such that for $n \ge N$, $a_{j_n}/a_{k_n} \le s$ and $j_n/k_n \ge t$. Define sequences $\{l_n\}$ and $\{m_n\}$ of integers by requiring that $l_1 = j_N$ and, for each n, if $l_n = j_i$, then $m_n = k_i$ and $l_{n+1} = j_v$ where $j_{v-1} < k_i \le j_v$. Then $a_{l_n} \le sa_{m_n} \le sa_{l_{n+1}}$ so $a_{l_n} \ge s^{1-n}a_{l_1}$. On the other hand, if $j_{n+1} - j_n \le M$ for all n, then $l_n \ge tm_n \ge t(l_{n+1} - M)$ so

$$l_n \leq t^{1-n} l_1 + M(t^{2-n} + t^{3-n} + \dots + 1)$$

= $t^{1-n} [l_1 + M(t - t^{n-1})/(1-t)].$

Hence

$$a_{l_n}/l_n \ge (t/s)^{n-1} \cdot a_{l_1}/[l_1 + M(t-t^{n-1})/(1-t)].$$

Since t < 1, the bracketed portion is bounded as $n \to \infty$. Also s < t, so we have a contradiction to the assumption that $a_n = \mathcal{O}(n)$.

It follows from Lemma 4 that

$$\limsup_{n\to\infty} \ \frac{K_{Gn-3}}{K_{8n}} \ge \frac{3}{4}.$$

Now fix $\delta > 0$. Pick *n* for which $K_{6n-3}/K_{8n} \ge 3(1-\delta)/4$. Now if integers $p_1, \dots, p_{16n}; q_1, \dots, q_{16n-2}; r_1, \dots, r_{16n-4}$ are chosen so that the sequence

$$p_{1}, q_{1}, r_{1}; p_{2}, p_{3}, q_{2}, q_{3}, r_{2}, r_{3}, p_{4}, p_{5}, q_{4}, q_{5}, r_{4}, r_{5}, \dots, p_{4n-2}, p_{4n-1}, q_{4n-2}, q_{4n-1}, r_{4n-2}, r_{4n-1}; p_{4n}, p_{4n+1}, q_{4n}, q_{4n+1}; p_{4n+2}, p_{4n+3}, q_{4n+2}, q_{4n+3}, r_{4n}, r_{4n+1}, \dots, p_{8n-2}, p_{8n-1}, q_{8n-2}, q_{8n-1}, r_{8n-4}, r_{8n-3}; p_{8n}, p_{8n+1}, r_{8n}, r_{dn+1}, \dots, p_{12n-2}, p_{12n-1}, q_{12n-4}, q_{12n-3}, r_{12n-4}, r_{12n-3}; p_{12n+3}, q_{12n}, q_{12n+1}, r_{12n-2}, r_{12n-1}, \dots, p_{16n-2}, p_{16n-1}, q_{16n-4}, q_{16n-3}, r_{16n-6}, r_{16n-5}; p_{16n}, q_{16n-2}, r_{16n-4}$$

is increasing and if

$$x \in S(p_1, \dots, p_{16n}),$$
(1)

$$y \in S(q_1, \dots, q_{16n-2}), \text{ and}$$

$$z \in S(r_1, \dots, r_{16n-4}), \text{ then}$$
($\frac{1}{3}$) $(x + y + z) \in S(r_1, p_2, r_3, p_4, \dots, r_{4n-1}, p_{4n};$

$$q_{4n+5}, r_{4n+2}, q_{4n+7}, r_{4n+4}, \dots, q_{8n-1}, r_{8n-4};$$

$$p_{8n+5}, q_{8n+2}, p_{8n+7}, q_{8n+4}, \dots, p_{12n+1}, q_{12n-2}),$$
($\frac{1}{3}$) $(-x - y + z) \in S(q_3, r_2, q_5, r_4, \dots, q_{4n-1}, r_{4n-2};$

$$q_{4n+1}, p_{4n+2}; r_{4n+1}, p_{4n+4}, r_{4n+3}, p_{4n+6},$$

$$\dots, r_{8n-3}, p_{8n}; p_{12n+5}, q_{12n+2}, p_{12n+7},$$

$$q_{12n+4}, \dots, p_{16n-1}, q_{16n-4}),$$
($\frac{1}{3}$) $(-x + y - z) \in S(p_{4n+3}, q_{4n+2}, p_{4n+5}, q_{4n+4},$

$$\dots, p_{8n-1}, q_{8n-2}; p_{8n+1}, r_{8n-2}; q_{8n+1},$$

$$r_{8n}, q_{8n+3}, r_{8n+2}, \dots, q_{12n-3}, r_{12n-4};$$

$$q_{12n-1}, p_{12n+2}; r_{12n-1}, p_{12n+4}, r_{12n+1},$$

$$p_{12n+6}, \dots, r_{16n-5}, p_{16n}$$
),

δ),

and

$$\begin{aligned} &(\frac{1}{3})(-x + y + z) \in S(p_3, q_2, p_5, q_4, \cdots, p_{4n+1}, \\ &q_{4n}; r_{8n+1}, p_{8n+4}, r_{8n+3}, p_{8n+6}, \cdots, \\ &r_{12n-3}, p_{12n}; q_{12n+3}, r_{12n}, q_{12n+5}, r_{12n+2}, \\ &\cdots, q_{16n-3}, r_{16n-6}). \end{aligned}$$

From the definition of $\{K_n\}$ we see that it is possible to choose the *p*'s, *q*'s, and *r*'s so that there exist *x*, *y*, and *z* satisfying (1) and, in addition, both

$$\|x\| \leq K_{8n}(1 + \delta),$$

$$\|y\| \leq K_{8n-1}(1 + \delta) \leq K_{8n}(1 + \delta),$$

$$\|z\| \leq K_{8n-2}(1 + \delta) \leq K_{8n}(1 + \delta),$$

and

$$\| + x + y + z \| \ge 3K_{6n-3}(1-\delta),$$

$$\| - x - y + z \| \ge 3K_{6n-3}(1-\delta),$$

$$\| - x + y - z \| \ge 3K_{6n-1}(1-\delta) \ge 3K_{6n-3}(1-\delta),$$

$$\| - x + y + z \| \ge 3K_{6n-3}(1-\delta).$$

So if $c^{\bullet} = [K_{8n}(1+\delta)]^{-1}$, x' = cx, y' = cy, and z' = cz, then $||x'|| \le 1$, $||y'|| \le 1$, and $||z'|| \le 1$, while for each choice of the + and - signs,

$$\| \pm x' \pm y' \pm z' \| \ge 3 \frac{K_{6i-3}(1-\delta)}{K_{8}(1+\delta)}$$
$$\ge 3 \cdot \frac{3}{4} \cdot \frac{(1-\delta)^2}{(1+\delta)}$$

Since $\delta > 0$ is arbitrary, it follows that for every $\varepsilon > \frac{1}{4}$, X is not 3, ε -convex.

REMARK 5. The author conjectures with a high degree of confidence that the technique of proof of Theorem 3 can be extended to show that if $\varepsilon > 1 - k2^{1-k}$ and X is k, ε -convex, then X is reflexive. However, in view of the easily established inequality $1 - k2^{1-k} > 1 - 9/(4k)$ for $k \ge 4$ and the following corollary, this seems pointless.

COROLLARY 6. If $k \ge 3$, $\varepsilon > 1 - 9/(4k)$, and X is k, ε -convex, then X is reflexive.

Vol. 15, 1973

PROOF. From Lemma 1, it follows that X is 3, δ -convex with $\delta > \frac{1}{4}$, so that Theorem 3 applies.

THEOREM 7. If X is an infinite dimensional k, ε -convex space, then $\varepsilon \leq 1 - k^{-\frac{1}{2}}$.

PROOF. Since by a theorem of Dvoretzky (see, e.g. [3]) X contains subspaces approximating k-dimensional Hilbert space as closely as one wants, it is sufficient to establish the inequality for k-dimensional Hilbert space. But there, it is the immediate consequence of the fact that, if x_1, \dots, x_k is an orthonormal sequence in a Hilbert space, then for all choices of the signs,

$$\left\| \pm x_1 \pm x_2 \pm \cdots \pm x_k \right\| = k^{\frac{1}{2}}.$$

REMARK 8. From the easily established k-parallelpiped law in Hilbert space

$$\Sigma \| \pm x_1 \pm \cdots \pm x_n \|^2 = 2^k \sum_{i=1}^n \| x_i \|^2$$

where the first Σ is over the 2^k choices of signs, we see that any Hilbert space (or even inner product space) is k, $1 - k^{-\frac{1}{2}}$ -convex so that the bound in Theorem 7 is sharp.

If we say that every space is k, 0-convex and for fixed X let $\varepsilon_k = \sup \{\varepsilon \ge 0: X \text{ is } k, \varepsilon \text{-convex}\}$ (so that, in fact, X is $k, \varepsilon_k\text{-convex}$), then (in a different notation) [4, Lemma I.4, p. 119] tells us that either $\varepsilon_k \equiv 0$ in which case X is not B-convex or $\varepsilon_k \to 1$ in which case X is B-convex and in the latter case there exists a $\gamma > 0$ for which $1 - \varepsilon_k = \mathcal{O}(k^{-\gamma})$. It follows from Theorem 7 that if X is infinite dimensional, $\gamma \le \frac{1}{2}$. By a routine extension of the technique of [4, example I.3(i), p. 118] (if k > n and x_1, \dots, x_k are vectors in n-space, then there are scalars a_1, \dots, a_k with all $|a_i| \le 1, k - n$ of the $|a_i| = 1$, and $\sum_{i=1}^{k} a_i x_i = 0$), we see that for k > n, all n-dimensional spaces are k, 1-n/k-convex, so in this case $\gamma = 1$.

Since $1 - k^{-\frac{1}{2}} < 1 - 9/(4k)$ for $k \ge 6$, we see that Corollary 6 can only be applicable to an infinite dimensional X for k = 3, 4, or 5. Since every finite dimensional space is reflexive, these are the only interesting cases of Corollary 6. Summarizing James' theorem and the present results, a k, ε -convex space is reflexive in case

(2)

$$k = 2 \text{ and } \varepsilon > 0,$$

$$k = 3 \text{ and } \varepsilon > 1/4,$$

$$k = 4 \text{ and } \varepsilon > 7/16,$$

$$k = 5 \text{ and } \varepsilon > 11/20.$$

COROLLARY 9. If X is k, ε -convex with k and ε as in (2) above, then X is superreflexive and stable.

PROOF. Super-reflexivity follows from [7, Theorem 3] (see [7] for the definition of super-reflexivity) and stability follows from Brunel and Sucheston [2, Theorem 1] or [6, Corollary 1]. (Stability is defined in both of these papers.)

References

1. A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Amer. Math. Soc. 13 (1962), 329-334; see also On the strong law of large numbers, Ergodic Theory, 21-53, Academic Press, New York, 1963.

2. A. Brunel and L. Sucheston, On B-convex Banach spaces, to appear in Math. Systems Theory.

3. A. Dvoretzky, *Some results on convex bodies and Banach spaces*, Proceedings of the International Symposium on Linear spaces, 123–160, Pergamon, Press, New York, 1961.

4. D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114–146; see also Additions and corrections to "On a convexity condition in normed linear spaces", Trans. Amer. Math. Soc. 140 (1969), 511–512.

5. D. P. GIESY, The completion of a B-convex normed Riesz space is reflexive, J. Functional Analysis 12 (1973), 188–198.

6. D. P. GIESY, Super-reflexivity, stability, and B-convexity, Western Michigan University Mathematics Report 29, August 1972, to appear in Math. Systems Theory.

7. D. P. Giesy and R. C. James, Uniformly non- $l^{(1)}$ and B-convex spaces, to appear in Studia Math.

8. R. C. James, Weak compactness and reflexivity, Israel J. Math. 2 (1964), 101-119.

9. R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.

10. R. C. James, Lecture Notes, University of Maryland, January, 1972.

DEPARTMENT OF MATHEMATICS WESTERN MICHIGAN UNIVERSITY

KALAMAZOO MICHIGAN, U. S. A.